望麓自卑—湖南大学最具潜力的校园传媒

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 2343|回复: 2

[转帖]博弈论(一):Nim游戏

[复制链接]
发表于 2007-9-4 18:39:34 | 显示全部楼层 |阅读模式
从今天开始,我将会用一系列文章介绍博弈论(Game Theory)的基本知识,以OI中可能用得着的为主。当然,我对博弈论的理解还很肤浅,而且我写东西的风格向来都是“个人心得”而非“传道授业”的类型。所以若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多。(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要看“博弈论”的时候。)

Nim游戏是博弈论中最经典的模型(之一?),它又有着十分简单的规则和无比优美的结论,由这个游戏开始了解博弈论恐怕是最合适不过了。

Nim游戏是组合游戏(Combinatorial Games)的一种,准确来说,属于“Impartial Combinatorial Games”(以下简称ICG)。满足以下条件的游戏是ICG(可能不太严谨):1、有两名选手;2、两名选手交替对游戏进行移动(move),每次一步,选手可以在(一般而言)有限的合法移动集合中任选一种进行移动;3、对于游戏的任何一种可能的局面,合法的移动集合只取决于这个局面本身,不取决于轮到哪名选手操作、以前的任何操作、骰子的点数或者其它什么因素; 4、如果轮到某名选手移动,且这个局面的合法的移动集合为空(也就是说此时无法进行移动),则这名选手负。根据这个定义,很多日常的游戏并非ICG。例如象棋就不满足条件3,因为红方只能移动红子,黑方只能移动黑子,合法的移动集合取决于轮到哪名选手操作。

通常的Nim游戏的定义是这样的:有若干堆石子,每堆石子的数量都是有限的,合法的移动是“选择一堆石子并拿走若干颗(不能不拿)”,如果轮到某个人时所有的石子堆都已经被拿空了,则判负(因为他此刻没有任何合法的移动)。

这游戏看上去有点复杂,先从简单情况开始研究吧。如果轮到你的时候,只剩下一堆石子,那么此时的必胜策略肯定是把这堆石子全部拿完一颗也不给对手剩,然后对手就输了。如果剩下两堆不相等的石子,必胜策略是通过取多的一堆的石子将两堆石子变得相等,以后如果对手在某一堆里拿若干颗,你就可以在另一堆中拿同样多的颗数,直至胜利。如果你面对的是两堆相等的石子,那么此时你是没有任何必胜策略的,反而对手可以遵循上面的策略保证必胜。如果是三堆石子……好像已经很难分析了,看来我们必须要借助一些其它好用的(最好是程式化的)分析方法了,或者说,我们最好能够设计出一种在有必胜策略时就能找到必胜策略的算法。

定义P-position和N-position,其中P代表Previous,N代表Next。直观的说,上一次move的人有必胜策略的局面是P-position,也就是“后手可保证必胜”或者“先手必败”,现在轮到move的人有必胜策略的局面是N-position,也就是“先手可保证必胜”。更严谨的定义是:1.无法进行任何移动的局面(也就是terminal position)是P-position;2.可以移动到P-position的局面是N-position;3.所有移动都导致N-position的局面是P-position。

按照这个定义,如果局面不可能重现,或者说positions的集合可以进行拓扑排序,那么每个position或者是P-position或者是N-position,而且可以通过定义计算出来。

以Nim游戏为例来进行一下计算。比如说我刚才说当只有两堆石子且两堆石子数量相等时后手有必胜策略,也就是这是一个P-position,下面我们依靠定义证明一下(3,3)是一个P是一个P是一个P-position。首先(3,3)的子局面(也就是通过合法移动可以导致的局面)有(0,3)(1,3)(2,3)(显然交换石子堆的位置不影响其性质,所以把(x,y)和(y,x)看成同一种局面),只需要计算出这三种局面的性质就可以了。 (0,3)的子局面有(0,0)、(0,1)、(0,2),其中(0,0)显然是P-position,所以(0,3)是N-position(只要找到一个是P-position的子局面就能说明是N-position)。(1,3)的后继中(1,1)是P-position(因为(1,1)的唯一子局面(0,1)是N-position),所以(1,3)也是N-position。同样可以证明(2,3)是N-position。所以(3,3)的所有子局面都是N-position,它就是P-position。通过一点简单的数学归纳,可以严格的证明“有两堆石子时的局面是P-position当且仅当这两堆石子的数目相等”。

根据上面这个过程,可以得到一个递归的算法——对于当前的局面,递归计算它的所有子局面的性质,如果存在某个子局面是P-position,那么向这个子局面的移动就是必胜策略。当然,可能你已经敏锐地看出有大量的重叠子问题,所以可以用DP或者记忆化搜索的方法以提高效率。但问题是,利用这个算法,对于某个Nim游戏的局面(a1,a2,...,an)来说,要想判断它的性质以及找出必胜策略,需要计算O(a1*a2*...*an)个局面的性质,不管怎样记忆化都无法降低这个时间复杂度。所以我们需要更高效的判断Nim游戏的局面的性质的方法。

直接说结论好了。(Bouton's Theorem)对于一个Nim游戏的局面(a1,a2,...,an),它是P-position当且仅当a1^a2^...^an=0,其中^表示异或(xor)运算。怎么样,是不是很神奇?我看到它的时候也觉得很神奇,完全没有道理的和异或运算扯上了关系。但这个定理的证明却也不复杂,基本上就是按照两种position的证明来的。

根据定义,证明一种判断position的性质的方法的正确性,只需证明三个命题: 1、这个判断将所有terminal position判为P-position;2、根据这个判断被判为N-position的局面一定可以移动到某个P-position;3、根据这个判断被判为P-position的局面无法移动到某个P-position。

第一个命题显然,terminal position只有一个,就是全0,异或仍然是0。

第二个命题,对于某个局面(a1,a2,...,an),若a1^a2^...^an!=0,一定存在某个合法的移动,将ai改变成ai&#39;后满足a1^a2^...^ai&#39;^...^an=0。不妨设a1^a2^...^an=k,则一定存在某个ai,它的二进制表示在k的最高位上是1(否则k的最高位那个1是怎么得到的)。这时ai^k<ai一定成立。则我们可以将ai改变成ai&#39;=ai^k,此时a1^a2^...^ai&#39;^...^an=a1^a2^...^an^k=0。

第三个命题,对于某个局面(a1,a2,...,an),若a1^a2^...^an=0,一定不存在某个合法的移动,将ai改变成ai&#39;后满足a1^a2^...^ai&#39;^...^an=0。因为异或运算满足消去率,由a1^a2^...^an=a1^a2^...^ai&#39;^...^an可以得到ai=ai&#39;。所以将ai改变成ai&#39;不是一个合法的移动。证毕。

根据这个定理,我们可以在O(n)的时间内判断一个Nim的局面的性质,且如果它是N-position,也可以在O(n)的时间内找到所有的必胜策略。Nim问题就这样基本上完美的解决了。

在下一节“Sprague-Grundy函数”中,我们将面对更多与Nim游戏有关的变种,还会看到Nim游戏的a1^a2^...^an这个值更广泛的意义。敬请期待。

快速链接:http://tianyi.yo2.cn/go/202984.html
 楼主| 发表于 2007-9-4 18:46:16 | 显示全部楼层
看完后可以试试着做做这几个题
http://acm.pku.edu.cn/JudgeOnline/problem?id=2234
(简单)

http://acm.hit.edu.cn/ojs/show.php?Proid=2533&Contestid=0
(有一定难度)
 楼主| 发表于 2007-9-4 18:48:01 | 显示全部楼层
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

每日推荐上一条 /1 下一条

小黑屋|手机版|湖南大学望麓自卑校园传媒 ( 湘ICP备14014987号 )

GMT+8, 2024-11-27 21:13 , Processed in 0.090452 second(s), 21 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表